Coprimeness among Element Orders of Finite Groups
نویسندگان
چکیده
منابع مشابه
The Number of Finite Groups Whose Element Orders is Given
The spectrum ω(G) of a finite group G is the set of element orders of G. If Ω is a non-empty subset of the set of natural numbers, h(Ω) stands for the number of isomorphism classes of finite groups G with ω(G) = Ω and put h(G) = h(ω(G)). We say that G is recognizable (by spectrum ω(G)) if h(G) = 1. The group G is almost recognizable (resp. nonrecognizable) if 1 < h(G) < ∞ (resp. h(G) = ∞). In t...
متن کاملGroup Theory: Graphs Related to Element Orders of Finite Groups
There are several graphs associated with finite groups which are currently of interest in the field. This subject of this project are graphs related to the element orders of a finite group. The best known such graph is the prime graph Γ(G) of the group G and is defined as follows. The vertices are the prime numbers dividing the order (=number of elements) of the group, and two such primes are l...
متن کاملBlack-box recognition of finite simple groups of Lie type by statistics of element orders
Given a black-box group G isomorphic to some finite simple group of Lie type and the characteristic of G, we compute the standard name of G by a Monte Carlo algorithm. The running time is polynomial in the input length and in the time requirement for the group operations in G. The algorithm chooses a relatively small number of (nearly) uniformly distributed random elements of G, and examines th...
متن کامل2 2 Se p 20 05 The Number of Finite Groups Whose Element Orders is Given
For any group G, πe(G) denotes the set of orders of its elements. If Ω is a non-empty subset of N, h(Ω) stands for the number of isomorphism classes of finite groups G such that πe(G) = Ω. We put h(G) = h(πe(G)). In this paper we show that h(P GL(2, p n)) = 1 or ∞, where p = 2 α 3 β + 1 is a prime, α ≥ 0, β ≥ 0 and n ≥ 1. In particular, we show that h(P GL(2, 7)) = h(P GL(2, 3 2)) = ∞.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: gmj
سال: 2006
ISSN: 1572-9176,1072-947X
DOI: 10.1515/gmj.2006.807